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Abstract. The universal field equations; recently constructed as examples of higher dimensional 
dynamical systems which admit an infinity of mequivalent Lagrangians, are shown to be 
lineadzed by a Legendre transformation. This establishes the conjecture that these equations 
desnibe integrable systems. While this construnion is implicit in general, there exists a large 
class of solutions for which an explicit form may be written. 

. 
1. Nonlinear equations kith an infini@.of conservation laws 

In a~ recent series of papers [l-31 an investigation of potentially integrable systems in 
higher dimensions was initiated. The characteristic property of the equations exhibited in 
these papers is that they &se as the Euler variational equations of an infinite number of 
inkuivalent Lagrangians, which, since they do not involve the fields explicitly, could 
construed as providing an infinite number of conservation laws. In the simplest case of just 
one field, the equation of motion possesses the propeity of covariance, i.e. any fundon of 
a solution is also a solution. 

One of the most remarkable properties of this equation which led us to describe it as 
'universal' is that it arises €rom an arbitrary function F(&), homogeneous of degree one in 
the first derivatives & = &$/axi of a scalar field @ ( x i )  over a manifold of dimension d by 
an iterative procedure of the following nature. Denote by E the Euler differential operator 

~. 

(In principle the expansion continues indefinitely but it is sufficient here to terminate at the 
stage of second derivatives & j . )  

Now consider the sequence of iterations;, 

&3 

&FE?= 
&3&F&F etc. 
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This sequence terminates after d iterations by vanishing identically. At the penultimate step 
the resulting expression set to zero may be regarded as a universal equation of motion; i.e. 
it is independent of the details of F and is, in fact the equation of motion for the Lagrangian 

C = 3€F...€3 (d - 1 factors). (1.3) 

This result is subject to the provision that 3 is. generic, i.e that the Hessian Mij = 
a2F(@k)/a@ia@j is of maximal rank, namely d - 1. In fact as shown in [3] it is even 
possible to choose different Fs in each factor in (1.3) without affecting the universality of 
the resulting equation, which takes the form 

It &ses as the Euler variation'of an infinite number of Lagrangians (1.3). In the cases 
considered, the Euler equation takes the form of a pure divergence, since none of the 
Lagrangians depends explicitly upon the fields themselves, but only upon first and second 
derivatives. Hence the Euler equation is itself in the form of a conservation law. Low- 
dimensional examples (d = 2, 3) show that the Lagrangians which give rise to the equation 
of motion are functionally independent, apparently giving rise to an infinite number of 
conservation laws. Thii property led us to speculate that this equation might be completely 
integrable, though it is not sufficient by itself to guarantee integrability. 

A more symmetric form of this equation, suitable for further generalization to the multi- 
field case can be obtained by introducing an additional variable XO,  and redefining @(xo, x i )  

as xo@(xi) .  Then (1.4) is equivalent to 

det(*)=O i , j = O , l ,  ..., d. 
axi axj 

The primary objective of this paper is to demonstrate that this is indeed the, case, by 
exhibiting a linearization of (1.4) using the Legendre transform [4]. This is a transformation 
which replaces a description of a hypersurface in terms of points by a description in terms 
of parameters of tangent hyperplanes and, as such, is a version of Penrose's well known 
twistor transform [5]. It has been used in this capacity to linearize the Plebanski equation 
[61 and also to construct hyperkaler manifolds PI 

2. The Legend= transformation 

Suppose a scalar field @ ( x i )  in d-dimensional spacetime obeys the dynamical equation 
f ( @ ( x i ) ,  @j,  @ j k )  = 0, where subscripts denote partial derivatives as above. This equation 
can sometimes be simplified by the use of the Legendre transformation [4], which involves 
the introduction of a set of variables ti, w(&) dual to xi,  @ ( x i ) ,  in the following sense. 
Consider, for simplicity, the case d = 2 .  Then z = @ ( x ,  y) determines a surface with a 
tangent plane at the point XO. yo, zo = @(xo, yo) given by the equation 

z - 20 - (x  - xo) @x(*(xo. YO) - (Y - YO) @&a, YO) = 0. (2.1) 
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Now .the general equation of a plane may be specified by three parameters w, 6, q as follows 

z - E x  -qy  + w = 0. (2.2) 

Comparing (2.1) and (2.2) it is evident that the conditions such &at (2.2) is a tangent plane 
to the surface at the point XO. yo, zo are 

t = @a il =@yo w = xo@q + Yo@yo~- a; (2.3) 

Now the surface z = @ ( x ,  y) is also determined if w is given as a function of e, q by which 
the two-parameter family of tangent planes is chiactenzed. So, since XO,  yo. zo is a generic 
point on the surface, we can drop the subscript and write the conditions as 

The last two relations may be obtained by partial differentiation of the first equation with the 
aid of the second two. This set then demonstrates a duality in the alternative descriptions 
of the geometry of the situation in terms of point and plane coordinates and (2.4) assigns 
to every surface element x ,  y. 4, &, @y a surface element 6.7, w, wg, w,,. This transform, 
which is clearly involutive, has the flavour, as was remarked earlier, of a twistor lransform. 
The generalization to an arbitrary number of independent variables is immediate: 

@ ~ ~ l ~ ~ Z ~ ~ ~ ~ ~ ~ d ~ ~ ~ ~ 6 l ~ ~ Z ~ ~ ~ ~ ~ ~ d ~ ~ ~ l ~ l ~ ~ Z ~ Z ~ ~ ~ ~ ~ ~ d ~ d  

ti = a&/Xxi xi = aw/a& Vi. (2.5) 

To evaluate the second derivatives @;j in terms of derivatives of w it is convenient 
to introduce two Hessian matrices: @, W with matriw elements &j and wc,g, = w;j 
respectively. Then assumiFg that @ is invertible, @W = ll and 

Since. det @ # 0, equation (1.4) can be mitten as 

(2.6) 

The effect of the Legendre transformation is immediate; in the new variables the equation 
becomes simply 

a linear second-order equation for the function w! Indeed, in terms of variables .yj = log(6j) 
the equation is linear with constant coefficients, and is thus completely understood. The 
general solution to this equation is simply 

w(&) W G i )  + V l U )  (2.9) 
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where uo, u1 are two arbitrary functions, homogeneous of degree zero and one, respectively, 
in ti. The solution of the original problem is given implicitly by elimination of 5; from the 
equations 

D B Fairlie and J Govaerts 

(2. IO) 

Note that the propem of covariance of the solution 4 is a reflection of the arbitrariness of 
I J O ( { ~ ) .  An explicit solution will not be possible in general, though in particular cases it 
might be feasible. Note that equations (2.9) and (2.10) imply 

(2.11) 

Now suppose uI(ti) = 0. This imposes the restriction that 4 ( x i )  is a function, homogeneous 
of degree zero in the variables x i ,  but is otherwise arbitrary. That such an explicit function 
satisfies (1.4) may be verified directly, an observation which has already been recorded in 
[l]. The Legendre transform method fails for the choice U&) = 0. 

As an illustrative example the case of d = 2, the so called Bateman equation will now 
be considered. In terms of the original variables, this equation t&es the form 

4;4m - 24.r4y4zy + 4:4yy = 0. (2.12) 

Under the Legendre transformation (2.4) this equation becomes 

t Z W R  + ?-&VJg,+ V2W,, = 0. (2.13) 

This linear equation admits the general solution 

w = f ( 5 / v )  + (t + l l )g ( t /q )  (2.14) 

where f, g are arbitrary functions. Differentiation with respect to 5, q yields 

(2.15) 

(2.16) 

giving 

4 = -f ( E / t l ) .  (2.17) 

Thus f / q  is an arbitrary function of '4. Division of the first relation of (2.16) by q, 
followed by redefinition, gives the standard construction of a general implicit solution to 
the Bateman equation which runs as follows. Constrain two arbitrary functions fi (&), f&) 
by the relation 

xf i  (4) + Y ~ z U )  = c (consmt) (2.18) 
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and solve for @. Then this @ solves the Bateman equation. For general d it will not be 
possible to cany out the explicit eliminination of the auxiliary variables except in very 
special circumstances. The reason that this works here is that the equation (2.8) is parabolic. 

This method of solution fails when det @ = 0. A large class of evident solutions to 
(1.4) fall into this category, for example those for which~4 is a function of all xi except 
one. A less trivial example consists of those for which q3 is given by an extension of (2.17); 

(constant) (2.18) 

an implicit functional relation for @ in terms of arbitrary functions A(@) [l]. This equation 
implies the following structure for the second.derivatives; 

@. I ,  - - ffi@j -+ cuj@i. (2.19) 

The precise form of the functions ui,aj is not revelant, but is easily found from (2.18). 
The important point is that (2.19) implies that det @ = ~ O  for d > 2.- 

~. 
3. Other transformable equations 

It is clear that many other examples of integrable nonlinear equations of second-order in 
field derivatives may now be constructed by reversing the Legendre transformation on a 
linear equation. Whether these equations also enjoy b similar properties to~those exhibited 
in 11-31 is a matter for speculation; however it is instructive to consider the case of the 
equation 

4htXZ - @ 3 r r  = 0 (3.1) 

which results from the substitution of u(x. f ) '  = -&/& into the first-order differential 
equation describing nonlinear waves 

au/at  = uaqax. (3.2) 

(Substitution of u(x, t )  = yields the Bateman equation.) This equation can be 
derived from the Lagrangian L = log(&/&), and admits an infinite set of conservation 
laws pf the form 

(3.3) 

where F is 
(3.1). Since (3.2) possesses'ah infinite number of conservation laws of the form 

arbitrary differentiable function of the product @r@z and @ ( t , x )  satisfies 

a = a (Z; . ; I )  

at ax n + l  

where n is arbitrary, there are also independent conservation laws of the form 

(3.4) 

(3.5) 



3344 

In fact, this last equation can be written in terms of an arbitrary function C(@J@J which 
admits a power series expansion as 

D B Fuirlie and J Covaerts 

It is curious that both (3.3) and (3.6) have the form of an Euler variation of a Lagrangian, 
except for the introduction of a 'Lorentz metric' into the Euler operator which here is 

, a a  a a  
afa@[ axa@x 

& (3.7) 

and G(@J@z)@x is homogeneous of degree one in derivatives of @, just like the Bateman 
Lagrangian. The equation of motion can then be written in the form 

with a 'Lagrangian' written as L = F(@t@x)+C(@t/@x)@r. The application of the Legendre 
transform to (3.1) produces the equation 

f=wfg - $w,, = 0 (3.9) 

with general solution 

w = f (fd + vg(f/ i l )  (3.10) 

where f, g are arbitrary functions of one variable. Note the appearance of a similar 
functional dependence to that in the conservation laws. The general solution of (3.1) is then 
obtained from the elimination of f ,  q from the equations 

aw 
- = x = V f ' O i l )  + g ' ( t / d  a t  

(3.11) 

The last equation implies that the product f q  is an arbitrary function of @, which might as 
well be taken as @ itself since equation (3.1) possesses the same covariance propem as the 
universal equation, and any function of a solution is also a solution. From the first pair of 
equations (3.11) one may deduce that ( f /q )x  - i is an arbitrary function of the ratio e / v ,  
but nothing more without making a specific choice. of g. 

Another example involves a slight generalization of (1.4) to the case where the zero in 
the top left comer is replaced by q@, where q is a numerical factor. Then the equation (2.7) 
becomes 

(3.12) 
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which translates into 

(3.13) 

with general solution of exactly the same form as (2.9) 

w($i)  = ~ q ( $ i )  + ~ ( t d  (3.14) 

where uq, V I  are two arbitrary functions, homogeneous of degree q and one respectively 
in ti, .provided q # 1. The solution~of the original equation proceeds, in principle, by 
elimination of fc, using (3.13), from 

(3.15) 

If q = 1, then the solution (3.14) requires modification, with attendant consequences for 
(3.15). 

4. Multicomponent field generalization 

In [3], a generalization, which had already been conjectured in [l], of the universal field 
equation (1.4) to an arbitrary number of fields (but fewer than the number of spacetime 
dimensions) was proved. Essentially the trick is to augment the number of space coordinates 
by an additional set U. equal to the number R of fields f ( x j )  and mite the universal equation 
(1.4) in terms of a master field 

Then the equation may be writtten 

det 

In~fact, though the equations have been expressed in this way to emphasize that they are 
effectively just a particular case of (lS), when the linear dependence of q5 on uo is invoked, 
the property @uaub = 0, Vu, b implies that the leading k x k submatrix in (4.2) vanishes, 
and the first row and column may be reexpressed after re-organizing the determinant as 
(0,. . ., 0,  a @ / a x , , .  . ., a@/ax,). The coefficients of  monomisls of total degree d + k in 
the variables U, in the expansion of the left-hand side of (4.2) set individually to zero 
form an overdetermined set of equations for the description of thefields f " ( x j ) ~  This set 
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of equations is generally covariant, i.e. any set of functions of the solution set is also a 
solution set. 

It is now comparatively easy to adapt the method of section 2 to the solution of this 
equation. All that is necessary is to introduce a set of k - 1 variables Aor conjugate to the 
U,, Q = 2 , .  . . , k in the same way as the ej are to the x j .  ut plays a special role, and is 
not conjugated. The Legendre transform becomes 

D B Fairlie and J Govaerts 

(4.3) 

aw 
* - ati 

a4 x .  - - - Vi ,  c i  = - axi 
The transform of equation (4.2) is simply (2.8) with modified solution 

w(An, ti) = U O ( A . ~ ,  b) + Ul(Aa,  ti) (4.4) 

where UO. U, are two arbitrary functions, homogeneous of degrees zero and one respectively 
in ti, but with thus far unrestricted dependence on A,. The arbitrainess in dependence on 
A is a reflection of the general covariance of the solution for f". The information that 4 
is a linear form in the variables U. must now be imposed upon the implicit solution of the 
functional relationships (4.3). 

The question of the introduction of this constraint complicates the issue as to whether 
this is a genuinely linearizable problem since the conditions = 0 translate into highly 
nonlinear restrictions on W, namely that the corresponding matrix elements of W-' vanish. 

The class of explicit solutions in section 2 may, however, be trivially extended to the 
multi-field case. All that is necessary is to observe that the choice of f " ( x i )  as a set of 
arbitmy functions, homogeneous of degree zero in their arguments automatically satisfies 
(4.2)! 

5. Conclusion 

This analysis has demonstrated that the universal field equations proposed in [ 1,2] which 
are covariant in the field or reparametrization invariant in the base space are linearizable 
by a Legendre transform, and thus may be added to the dossier of examples of integrable 
systems linearizable by a transform method. It thus justifies the hopes for integrability 
presented in those papers, based upon the existence of an infinite number of conservation 
laws. (There was a flurry of activity in the mid 1960s when such conservation laws were 
written down for linear systems {&I 11.) 

The more general class of overdetermined equations, conjectured in [1,2] and 
demonstrated to be simply a particular case of the single field in d 4- k - 1 dimensions, 
and thus potentially integrable, still require a further technical trick before the assertion of 
integrability can be justified, on account of the dfficulty in implementing the requirement 
of a linear decomposition of @ into its component fields. The most interesting case is that 
for d = 4, k = 2. Then the equations describe a new reparametrization invariant sting 
in four dimensions, whose world sheet is specified by the intersection of the hypersurfaces 
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f ( x ,  y .  L ,  f )  = 0 and g(x, y, z, t )  = 0. More explicitly this set of equations is given by 
requiring 

(5.1) 
1 i: f i  gt u1fxr  +uzgzt UlfYl + u2gy: U l f z t  +uzgzt  U l f t t  4-uzg:t 

f x  f Y  f, ft 
gx gY 8 2  gt 

det f x  gx- U l f X X  + uzgu U1 f ,  + uzgzy U l f Z Z  + u2gxz u1fx t  + uzgxt = 
f y  g y  U l f X Y  -k uzgzy U1 f y y  4- u'2gyy u l f y z  u2gyz W f y t  + mgy, 
f z  gz UlfXL + uzgxz U1 fYZ + uzgyz  U l f L L  + uzgu U1 f z t  + u2gzt 

for all choices of UI, uz. It will be interesting to examine solutions either based upon 
*e ttchniques of this paper, or otherwise. Note the particularly simple class of solutions 
f ( x ,  y ,  z ,  t ) ,  g(x, y ,  z ,  t )  as arbitrary homogeneous functions of degree zero in x, y . z .  t .  
The corresponding hypersurfaces mentioned above are now generalized cones. 

For a large class of known solutions (2.18), the Legendre transform method technically 
fails, because @ is singular for these solutions. Furthermore, although these equations 
are linearizable by the Legendre transform, this does not mean that they are tractable, as 
the solution so obtained is only implicit. This is by no means unusual in dealing with 
nonlinear systems; for example the well known mm construction [12] of SU(2) self-dual 
Yang-Mills instantons is not explicitly solvable in the general case, nor is the corresponding 
multi-monopole construction [13]. 

The intriguing feature of the universal field equations is that they are derivable by 
a process of iteration of the Euler variation, for which there is not so far a geometrical 
motivation. By applying the converse transformation to other linear systems, such as 
those exemplified in section 3, more understanding of the nature of the higher-dimensional 
integrable systems of this type may be gained. 
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